Connections on lie Algebroids and the Weil-Kostant Theorem
Από το τεύχος 44 του περιοδικού Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
The Weil ? Kostant theorem characterizes those alternating (real ? valued) 2 ? forms which are curvature forms of connections in U (1) ? bundles. We present in this talk an overview of a corresponding result for arbitrary Lie groups which was proved by K.C.H. Mackenzie in 1987, using the notion of Lie algebroids. A Lie algebroid is a vector bundle whose module of sections has a Lie algebra bracket and a vector bundle morphism to the tangent space of the base manifold which preserves the Lie brackets. The main aims of this talk are two: First, to demonstrate that the theory of Lie algebroids is a suitable environment in which one can do connection theory (which is this speaker?s main research interest), and second to show how one can use Lie algebroids to tackle non ? abelian problems which often arise in the process of quantization and elsewhere.
Στοιχεία Άρθρου
Περιοδικό |
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας |
Αρ. Τεύχους |
Τεύχος 44 |
Περίοδος |
2000 |
Συγγραφέας |
Iakovos Androulidakis |
Αρ. Αρθρου |
7 |
Σελίδες |
51-57 |
Γλώσσα |
- |
Λέξεις Κλειδιά |
Lie algebroids, principal bundles, Atiyah sequences, cohomology, geometric prequantization |
Σελ. 1
Σελ. 2
Σελ. 3
Σελ. 4
Σελ. 5
Σελ. 6
Σελ. 7