Connections on lie Algebroids and the Weil-Kostant Theorem

Από το τεύχος 44 του περιοδικού Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
The Weil ? Kostant theorem characterizes those alternating (real ? valued) 2 ? forms which are curvature forms of connections in U (1) ? bundles. We present in this talk an overview of a corresponding result for arbitrary Lie groups which was proved by K.C.H. Mackenzie in 1987, using the notion of Lie algebroids. A Lie algebroid is a vector bundle whose module of sections has a Lie algebra bracket and a vector bundle morphism to the tangent space of the base manifold which preserves the Lie brackets. The main aims of this talk are two: First, to demonstrate that the theory of Lie algebroids is a suitable environment in which one can do connection theory (which is this speaker?s main research interest), and second to show how one can use Lie algebroids to tackle non ? abelian problems which often arise in the process of quantization and elsewhere.
Στοιχεία Άρθρου
Περιοδικό Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Αρ. Τεύχους Τεύχος 44
Περίοδος 2000
Συγγραφέας Iakovos Androulidakis
Αρ. Αρθρου 7
Σελίδες 51-57
Γλώσσα -
Λέξεις Κλειδιά Lie algebroids, principal bundles, Atiyah sequences, cohomology, geometric prequantization

Σελ. 1

Σελ. 2

Σελ. 3


Σελ. 4

Σελ. 5

Σελ. 6

Σελ. 7