Involutions of Vector spaces and Algebras
Από το τεύχος 44 του περιοδικού Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
A *- vector space is a pair (V, *) consisting of a vector space V and a map *: V ? V: x a*x, x ? V, with the properties: **x = x, *()xy+ = **xy+, ** (λ x) = λ x , x, y V, λ C (linear involution or vector space involution). A * - algebra (or involutive algebra) is a * - vector space (A, *) whose involution satisfies the additional property: ???***(),,xyyxxy?=??V (algebraic involution of the algebra A). Here the following questions arise: Question 1: Can we find all (: linear) involutions of a given vector space V? Question 2: Can we find all (algebraic) involutions of a given algebra A? Question 3: Can we find all multiplications of a vector space V and, in particular, the associative ones? In this paper we answer in the positive the first and third question, while we give a relevant hint (cf. Theorem 1.3), concerning the second one.
Σελ. 1
Σελ. 2
Σελ. 3
Σελ. 4
Σελ. 5
Σελ. 6
Σελ. 7
Σελ. 8
Σελ. 9
Σελ. 10
Σελ. 11
Σελ. 12
Σελ. 13